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THE THREE-DIMENSIONAL PROBLEM OF STEADY OSCILLATIONS OF AN ELASTIC HALF-SPACE 
WITH A SPHERICAL CAVITY* 

T.G. RUMYANTSEVA,T.N. SELEZNEVA and M.G. SELEZNEV 

The three-dimensional problem of the dynamic theory of elasticity con- 
cerning steady harmonic oscillations of an elastic half-space with a 
spherical cavity is considered. The problem is reduced, with help of 
the superposition principle, to that of solving a system of six integral 
equations describing the stress-strain state of the medium. Analgorithm 
for solving the system is given, which can be used in the case when the 
cavity has a relatively small radius to obtain an approximate solution 
with any desired degree of accuracy, in the form of an asymptotic expansion. 
A numerical analysis of the stress-strain state of the elastic medium is 
given for a wide range of frequencies. 

1. Consider the problem of the forced steady harmonic oscillations of an elastic half- 
space with a deeply placed spherical cavity, in the three-dimensional formulation. The region 
occupied by the elastic medium is defined by 

z $3 0, r > Q (f(f + ?tp -I- xz + y” = tT) 

where a is the cavity radius, h is the depth of its centre, s, a, 2 are rectangular Cartesian 
coordinates and r:, a, $ are spherical coordinates attached to the cavity centre. Let 2, y, 2, 
r denote the dimensionless coordinates referred to the cavity radius a. 

The following boundary conditions are specified at the boundary of the cavity in the 
general case: ) 

zL=o, rzz = tl(5, y) e-jot, T”* = tz (z, y) e-iW’, crT, = ta (5, y) riwf (1.1) 

r = 1, a, = r1 (cq fi) e-iol, T, = TV (a, 8) c’~~, trg = TV (a, /3) e-‘@’ 

The motion of the medium is described by the dynamic equations of the theory of elasticity 
in terms of the displalements, i.e. by the Lams equations /I/. 

*Prikl.iYatem.Mekhan.,50,4,651-656,1986 
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The solution of the boundary value problem formulated here is constructed, as in /2/, in 
the form of the sum of solutions of two boundary value problems. These are: the problem of 
steady harmonic oscillations of an elastic half-space under the action of stresses specified 
at its surface 

z-0, rrr = Xr(x,y}e-ioz, ~~~ =X;(Z,~)+~* 

C,z=-_Xs(r,Y)@f 

and the problem of the steady harmonic oscillations of an infinite elastic space with a 
spherical cavity under a load of distributed forces 

I = I, u, = Y1 (a, p) e-‘a’, r,, = Y, (a, f3) e-i-f 

TrB = Ys (a, p) riot 

To determine the unknown functions X,(X,&, Yj(u,@) (i==*,&3), we use the boundary con- 
ditions of the initial boundary value problem. Adding together the solutions of the two 
boundary value problems formulated above and satisfying the boundary conditions (1.11, we 
obtain a system of six integral equations 

Here E = at'h . The functions @~((r, y, (F, $). Kj, (E, 9, a, fi) are very cumbersome, e.g. 

Kll 6, tl, a, B) = [<- $+- t(E” COG/~ f ~asinzB fF;rlsin28)[(J++t 

~8%) exp (lnzo) - 229 exp &zo)] + raa [(W + a*) ev (Qo) - 
sin 2@ 

2X12 exp (h)]f - & [ Erl cos 2s -+ (V - E2) 7-J X 

exp (h&)> (1 - co.7 24 -t [& [(U + u2P exp (ko) - 

4X&z exp (k,z,)] (5 cos B + tt sin B) -i- 

-$- exp &zo) (q eos f3 - E sin a)} sin 2a i- 

% (~2 + W) (exp (haze) - exp (h~zo))] exp [- i (8x0 -t ?Yo)] 

UP::!, (2, y) = [a$‘F$k (I, Y) - a!?F% (2, Y)]/& 

p$l, (x, g)= - --&H& (9~0) SF fao, 60) sin 2a0 cm PO 

ac'- [- 0aa/(2812) -t IZ(IZ - 1)/W] H$,(ez) f 2H!&, (el)/e~ 

ag = [(n - 1) f&b,,, @32) - ~~H~~;,, (e~)l/e~2 

ag) = n (n -f- I) f(!t - 1) HA%,, (w - fwz%,, (e,)i/e,* 

.!g = [(n” - 1 - ea2) HA%,, (es) + ea%, (e,)lie,z 

a!$’ (a, B) = p + 4) (IL - k)!/{4n (n + k)I)]“= P, (co.3 a) exp (&p) 

et2 = ~zaz/(~ + 2p), es* = pwaa2/r~ 

where S&(X) (a, B) are functions conjugate to W) (a, B). 

The contours of integration or, C2 are chosen taking into account the principle of limit 
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absorption /3/, and the solution of the system is constructed in the class of summable functions. 
Analysing the elements of the system of integral Eqs.(1.2) we find that when h>a t the 

operator of the system is completely continuous in the space of summable functions, and we 
can, in general, reduce the system, as in /2/, to an infinite quasiregular system of linear 
algebraic equations whose solutions can be obtained using a computer, e.g. by a reduction 
method. 

When E are small, the operator of the system will be compressive, and this enables us to 
use the method of consecutive approximations with asymptotic computation of the integrals to 
obtain its solution. The solution is obtained in the form of an asymptotic expansion in powers 
of the small parameter e 

Xj=XjOfeXjl+..., Yj=Yjo+aYjl+... 

Let us consider the case when a<$. Analysis of the properties of 
(1.2) determines the choice of the zero-order approximation 

XjO(G#)=tj(%?4)v YjtJ(Us8)=?fj(%B)9 i-i*2s 3 

In order to construct the higher approximations, we will write the 
a more specific form such as 

Calculating the first-order approximation with the accuracy of up to O(e*), we obtain 

Xk@,y)=O;(a2), k-%2, i=1,2,3, Xs=P(s,y)+U{ea) 

:M, = I/l+;+N, t N,= JI+;+N’, ba#bl, ca#cl 

M = e (bl f b,)J2, N = e (cl + c,)/2, 3 = (b, - b,)/2 
c = (Ca - Cl)/2 

The expressions for the terms Ofa') (the second approximation) are very cumbersome, and 

the elements of system 

functions tjr Zj in 

rj(a,p)=O, j=1,2,3, Q:xE[~~, bJ UYE[C,, CJ 

are therefore omitted. The following notation is used in the above relations: 

The branches of Lj,when / uj<Bj in the expressions given above are chosen as follows 

/3/: 

When a more accurate solution of the system of integral equations is needed, the process 
of constructing the consecutive approximations can be continued. 

It should be noted that when the cavity is cylindrical, the system of integral equations 
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has the same structure and properties and its solution is constructed in exactly the same 
manner. 

2. In order to determine the stress-strain state of the elastic medium by solving the 
system of integral equations, we have the following expressions for the displacement vector 
components /2/: 

u, = .(?) + u(2) 1 11 uy = uz” .I- q, u, =$’ + UI” (2.1) 
u’?‘=U’2’sinacOs~-tu~‘cosacos~-u~)sin~, pl=arctg$ X 1 

2~:’ = up’ sin a sin p + Ut’ C0s a sin f3 + 216’ cos p, 

a=arctgw 

21~‘) = up’ cos a - up sin a, T i = [x2 + y* + (z + .s-1)a]‘/* 

Here the superscript (1) corresponds to the solution of the problem for a homogeneous 
elastic half-space, and the superscript (2) corresponds to the three-dimensional problem for 
an elastic space with a spherical cavity. 

When computing the components of the displacement vector (2.1) uX(l),u,(r),uz(r) , it is some- 
times convenient to describe them in terms of the spherical coordinate system fl, tp,V attached 
to the centreof the region to which the load is applied. In the adjacent zone we use the 
numerical algorithm for computing the integrals which determine the components of the displace- 
ment vector in an elastic half-space, and in the zone lying away from the region to which the 
load is applied, it is more convenient to carry out the analysis using asymptotic methods. 
For example, when R > 1, we obtain for 0 < sin2 'p < B1a/6zs, cp # n/2 

z # 0, R = [(x0 - x)” f (y. - Y)" f z21’% (r = arctg h 

&’ (R,cp, 4) = - ap”1’(2e1Psin*m - “‘) coscp@ (cp, I#, 01) exp (i&R)+ 0(R7) 
ZvHA (51, qd 

&) (R ‘p 9) _ ape24 
m 9’ WR [ 

s - sina cp 
3 

“’ c~$2~~~ O (cp, Ilr, es) exp (ie,R) + 0 (R-7 

d,?(R ‘F $)=O(R-a), 9 I 10 = ME-‘, y. = Ne-1 

Q = arctg z 

(2.2) 

When 812/8,2 ( sin 'p ( 1, the form of the relations determining u#), u,$*) remains unchanged. 
The expression for ~~(1) becomes 

(2.3) 

b (Ek, qr) = (213~2 sin2 ‘p - e2a)* + 4ek2 sin2 ‘p [(e,* - eka sin* (p) (8.2 - ek2 sin2 cp)]‘fs 

&, qk) = (- ekcososincp, -eksincpsin$} 

(2, (CP, 9, e,) = 
4sin(i3BI sincp eos*)sin(CO, sin rqsin*) 

e12 sin* ‘p cos 9 sin $I , 1=1,2 

The expressions for z@ (R, w,$),ue (Q(R, cp, $), UP (R, cp, Ad when cp = ni2 are described in 
practice by the relations determining the Rayleigh wave (corresponding to the residue at the 

Rayleigh pole). 
Let US write u,(z) = ul@), u,(z) -= u&2), u&z) = u,(z). In this case we obtain, for 1/M' $ N2 < 1, 

cc 

up (r, a) = a r, -&- [ &b$ (r, a) - &AC (r, a)] Yl, 
n=Ll 

yl, = (- 1)” en i- 1) k.P 
w elj, (e,) exp i elo + 9 I( )I 

u$ (i, a) = 
I -l-i 

e&l (n + 1) r/F 
r HZ&, (e,r) - tw%,, (ear)] x 

dP, (cos a)/da, ug=uJ$=o 

(2.4) 

where jn (e,) = l/n/(28,) Jn+~i2 ted are spherical Bessel functions of the first kind. 
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Fig.1 Fig.2 

It should be noted that the relations describing the wave field in an elastic medium 
obtained on the assumption that R> 1,9,/e>l,T/W+ N2<1. When e(c1, the expressions 
be used in practice in the region containing a spherical cavity. 

The accuracy of the description of the displacement field in an elastic medium is 

were 
can 

determined by the accuracy of the solution of the system of integral equations (1.2). When 
analysing the displacement field in the zone near to 8, the integrals determining u@, up, 
u,+(l) are calculated directly using a digital computer. The relations determining u,(n), u,(a), 
u&z) are obtained only under the assumption that &/E > l,l/M”+ NP< 1, and have the form 
(2.4). 

The proposed investigative scheme was realized on a digital computer. A numerical 
analysis of the displacement field was carried out for practically the whole elastic region. 
The behaviour of the solutions was studied when various parameters of the problem were varied. 
In particular, we studied the dependenceofthe amplitude functions of the displacement of the 
points of the elastic region on the frequency of the oscillations near to and far from the 
cavity. The behaviour of the amplitude displacement functions of the angular and radial 
coordinates was studied at fixed oscillation frequencies. 

Figure 1 shows, as an example, the amplitude-frequency characteristics of the displacement 
Ye of a point of the region whose coordinates are R = 8.0. $= 3.927, cp= 2.186(~=~/,,~ = 0.1, b = c = 10). 

The solid line shows the real component and the dashed line the imaginary component, and the 
dot-dash line the modulus of the amplitude function. 

Figure 2 shows the dependence of ~a on the angular coordinate JI in the plane (0=2.186 
perpendicular to the boundary of the half-space and passing through the centres of the cavity 
and the region Q when R = 18.4, b = c = 10, e = O,i, v = VQ1 0% = t. 

Analysis of the solutions obtained shows that when the wave field is determined in the 
zone far from the cavity (r> 1, R - 1) with an accuracy up to terms 0 (e) I we can use the 
solution of the problem for a homogeneous elastic half-space. In the zone immediately 
adjacent to the cavity, the solution is determined (with the same degree of accuracy) by the 
relations (2.1)-(2.4) and can be obtained equally well by solving both auxiliary problems 
formulated in Sect.1. 
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